Forebrain microglia from wild-type but not adult 5xFAD mice prevent amyloid-β plaque formation in organotypic hippocampal slice cultures

نویسندگان

  • Sabine Hellwig
  • Annette Masuch
  • Sigrun Nestel
  • Natalie Katzmarski
  • Melanie Meyer-Luehmann
  • Knut Biber
چکیده

The role of microglia in amyloid-β (Aβ) deposition is controversial. In the present study, an organotypic hippocampal slice culture (OHSC) system with an in vivo-like microglial-neuronal environment was used to investigate the potential contribution of microglia to Aβ plaque formation. We found that microglia ingested Aβ, thereby preventing plaque formation in OHSCs. Conversely, Aβ deposits formed rapidly in microglia-free wild-type slices. The capacity to prevent Aβ plaque formation was absent in forebrain microglia from young adult but not juvenile 5xFamilial Alzheimer's disease (FAD) mice. Since no loss of Aβ clearance capacity was observed in both wild-type and cerebellar microglia from 5xFAD animals, the high Aβ1-42 burden in the forebrain of 5xFAD animals likely underlies the exhaustion of microglial Aβ clearance capacity. These data may therefore explain why Aβ plaque formation has never been described in wild-type mice, and point to a beneficial role of microglia in AD pathology. We also describe a new method to study Aβ plaque formation in a cell culture setting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eliminating microglia in Alzheimer's mice prevents neuronal loss without modulating amyloid-β pathology.

In addition to amyloid-β plaque and tau neurofibrillary tangle deposition, neuroinflammation is considered a key feature of Alzheimer's disease pathology. Inflammation in Alzheimer's disease is characterized by the presence of reactive astrocytes and activated microglia surrounding amyloid plaques, implicating their role in disease pathogenesis. Microglia in the healthy adult mouse depend on co...

متن کامل

Knockout of Toll-like receptor 2 attenuates Aβ25–35-induced neurotoxicity in organotypic hippocampal slice cultures

Toll-like receptors (TLRs), which have been implicated in various neuroinflammatory responses, are thought to act in defense mechanisms by inhibiting neuronal cell death in Alzheimer's disease. In this study, we evaluated the effects of TLR2 on amyloid beta peptide 25-35 (Aβ25-35)-induced neuronal cell death, synaptic dysfunction, and microglial activation in organotypic hippocampal slice cultu...

متن کامل

Eliminating microglia in Alzheimer’s mice prevents neuronal loss without modulating amyloid-b pathology

In addition to amyloid-b plaque and tau neurofibrillary tangle deposition, neuroinflammation is considered a key feature of Alzheimer’s disease pathology. Inflammation in Alzheimer’s disease is characterized by the presence of reactive astrocytes and activated microglia surrounding amyloid plaques, implicating their role in disease pathogenesis. Microglia in the healthy adult mouse depend on co...

متن کامل

Organotypic Brain Slice Cultures of Adult Transgenic P301S Mice—A Model for Tauopathy Studies

BACKGROUND Organotypic brain slice cultures represent an excellent compromise between single cell cultures and complete animal studies, in this way replacing and reducing the number of animal experiments. Organotypic brain slices are widely applied to model neuronal development and regeneration as well as neuronal pathology concerning stroke, epilepsy and Alzheimer's disease (AD). AD is charact...

متن کامل

Altered motility of plaque-associated microglia in a model of Alzheimer's disease.

Alzheimer's disease (AD), the most common form of dementia in the elderly, is characterized by the presence of extracellular plaques composed of amyloid β (Aβ) peptides and intracellular tau aggregates. The plaques are surrounded by microglia, the brain's resident immune cells, which likely participate in the clearance of Aβ by phagocytosis. The microglia that are associated with plaques displa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015